Critical Behavior of Random Resistor Networks
نویسندگان
چکیده
We present numerical data and scaling theories for the critical behavior of random resistor networks near the percolation threshold. We determine the critical exponents of a suitably defined resistance correlation function by a Padé analysis of low-concentration expansions as a function of dimensionality. We verify that d=6 is the critical dimensionality for the onset of mean-field behavior. We use the coherent-potential approximation to construct a mean-field scaling function for the critical region.
منابع مشابه
Critical Behavior of Random Resistor Networks Near the Percolation Threshold
We use low-density series expansions to calculate critical exponents for the behavior of random resistor networks near the percolation threshold as a function of the spatial dimension d. By using scaling relations, we obtain values of the conductivity exponent μ. For d=2 we find μ=1.43±0.02, and for d=3, μ=1.95±0.03, in excellent agreement with the experimental result of Abeles et al. Our resul...
متن کاملCurrent flow in random resistor networks: the role of percolation in weak and strong disorder.
We study the current flow paths between two edges in a random resistor network on a L X L square lattice. Each resistor has resistance e(ax) , where x is a uniformly distributed random variable and a controls the broadness of the distribution. We find that: (a) The scaled variable u identical with u congruent to L/a(nu) , where nu is the percolation connectedness exponent, fully determines the ...
متن کاملec 1 99 8 Critical exponents for diluted resistor networks
An approach by Stephen is used to investigate the critical properties of randomly diluted resistor networks near the percolation threshold by means of renormalized field theory. We reformulate an existing field theory by Harris and Lubensky. By a decomposition of the principal Feynman diagrams we obtain a type of diagrams which again can be interpreted as resistor networks. This new interpretat...
متن کاملAnomalous stress relaxation in random macromolecular networks
Within the framework of a simple Rouse-type model we present exact analytical results for dynamical critical behaviour on the sol side of the gelation transition. The stress-relaxation function is shown to exhibit a stretched-exponential longtime decay. The divergence of the static shear viscosity is governed by the critical exponent k = φ − β, where φ is the (first) crossover exponent of rando...
متن کاملScaling in Small-World Resistor Networks
We study the effective resistance of small-world resistor networks. Utilizing recent analytic results for the propagator of the Edwards-Wilkinson process on small-world networks, we obtain the asymptotic behavior of the disorder-averaged two-point resistance in the large system-size limit. We find that the small-world structure suppresses large network resistances: both the average resistance a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017